1 """SPI Class for NXP LPC4330"""
 
   2 from greatfet import GreatFET
 
   6     """Custom I2C Class for NXP LPC4330"""
 
  12         self._frequency = None
 
  13         self.buffer_size = 255
 
  33     # pylint: disable=too-many-arguments,unused-argument
 
  45         """Initialize the Port"""
 
  46         # Figure out the mode based on phase and polarity
 
  47         polarity = int(polarity)
 
  49         self._mode = (polarity << 1) | phase
 
  51         # Using API due to possible interface change
 
  52         self._spi = self._gf.apis.spi
 
  53         # Check baudrate against presets and adjust to the closest one
 
  54         if self._frequency is None:
 
  55             preset = self._find_closest_preset(baudrate)
 
  57             preset = self._presets[self._frequency]
 
  58         clock_prescale_rate, serial_clock_rate = preset
 
  59         self._spi.init(serial_clock_rate, clock_prescale_rate)
 
  61         # Set the polarity and phase (the "SPI mode").
 
  62         self._spi.set_clock_polarity_and_phase(self._mode)
 
  64     # pylint: enable=too-many-arguments
 
  66     def _find_closest_preset(self, target_frequency):
 
  67         """Loop through self._frequencies and find the closest
 
  68         setting. Return the preset values and set the frequency
 
  72         for frequency in self._presets:
 
  73             preset = self._presets[frequency]
 
  74             if self._frequency is None or abs(frequency - target_frequency) < abs(
 
  75                 self._frequency - target_frequency
 
  77                 self._frequency = frequency
 
  78                 closest_preset = preset
 
  84         """Return the current frequency"""
 
  85         return self._frequency
 
  87     def write(self, buf, start=0, end=None):
 
  88         """Write data from the buffer to SPI"""
 
  89         end = end if end else len(buf)
 
  90         self._transmit(buf[start:end])
 
  92     # pylint: disable=unused-argument
 
  93     def readinto(self, buf, start=0, end=None, write_value=0):
 
  94         """Read data from SPI and into the buffer"""
 
  95         end = end if end else len(buf)
 
  96         result = self._transmit([], end - start)
 
  97         for i, b in enumerate(result):
 
 100     # pylint: enable=unused-argument
 
 102     # pylint: disable=too-many-arguments
 
 104         self, buffer_out, buffer_in, out_start=0, out_end=None, in_start=0, in_end=None
 
 106         """Perform a half-duplex write from buffer_out and then
 
 107         read data into buffer_in
 
 109         out_end = out_end if out_end else len(buffer_out)
 
 110         in_end = in_end if in_end else len(buffer_in)
 
 112         result = self._transmit(buffer_out[out_start:out_end], in_end - in_start)
 
 113         for i, b in enumerate(result):
 
 114             buffer_in[in_start + i] = b
 
 116     # pylint: enable=too-many-arguments
 
 118     def _transmit(self, data, receive_length=None):
 
 119         data_to_transmit = bytearray(data)
 
 120         data_received = bytearray()
 
 122         if receive_length is None:
 
 123             receive_length = len(data)
 
 125         # If we need to receive more than we've transmitted, extend the data out.
 
 126         if receive_length > len(data):
 
 127             padding = receive_length - len(data)
 
 128             data_to_transmit.extend([0] * padding)
 
 130         # Transmit our data in chunks of the buffer size.
 
 131         while data_to_transmit:
 
 132             # Extract a single data chunk from the transmit buffer.
 
 133             chunk = data_to_transmit[0 : self.buffer_size]
 
 134             del data_to_transmit[0 : self.buffer_size]
 
 136             # Finally, exchange the data.
 
 137             response = self._spi.clock_data(len(chunk), bytes(chunk))
 
 138             data_received.extend(response)
 
 140         # Once we're done, return the data received.
 
 141         return bytes(data_received)