]> Repositories - hackapet/Adafruit_Blinka_Displayio.git/blobdiff - vectorio/_vectorshape.py
Add vectorio support
[hackapet/Adafruit_Blinka_Displayio.git] / vectorio / _vectorshape.py
diff --git a/vectorio/_vectorshape.py b/vectorio/_vectorshape.py
new file mode 100644 (file)
index 0000000..d3d1ddb
--- /dev/null
@@ -0,0 +1,382 @@
+# SPDX-FileCopyrightText: 2020 Melissa LeBlanc-Williams for Adafruit Industries
+#
+# SPDX-License-Identifier: MIT
+
+"""
+`vectorio._vectorshape`
+================================================================================
+
+vectorio for Blinka
+
+**Software and Dependencies:**
+
+* Adafruit Blinka:
+  https://github.com/adafruit/Adafruit_Blinka/releases
+
+* Author(s): Melissa LeBlanc-Williams
+
+"""
+
+import struct
+from typing import Union, Tuple
+from circuitpython_typing import WriteableBuffer
+from displayio._colorconverter import ColorConverter
+from displayio._colorspace import Colorspace
+from displayio._palette import Palette
+from displayio._area import Area
+from displayio._structs import null_transform, InputPixelStruct, OutputPixelStruct
+
+__version__ = "0.0.0+auto.0"
+__repo__ = "https://github.com/adafruit/Adafruit_Blinka_displayio.git"
+
+
+class _VectorShape:
+    def __init__(
+        self,
+        pixel_shader: Union[ColorConverter, Palette],
+        x: int,
+        y: int,
+    ):
+        self._x = x
+        self._y = y
+        self._pixel_shader = pixel_shader
+        self._hidden = False
+        self._current_area_dirty = True
+        self._current_area = Area(0, 0, 0, 0)
+        self._ephemeral_dirty_area = Area(0, 0, 0, 0)
+        self._absolute_transform = null_transform
+        self._get_screen_area(self._current_area)
+
+    @property
+    def x(self) -> int:
+        """X position of the center point of the circle in the parent."""
+        return self._x
+
+    @x.setter
+    def x(self, value: int) -> None:
+        if self._x == value:
+            return
+        self._x = value
+        self._shape_set_dirty()
+
+    @property
+    def y(self) -> int:
+        """Y position of the center point of the circle in the parent."""
+        return self._y
+
+    @y.setter
+    def y(self, value: int) -> None:
+        if self._y == value:
+            return
+        self._y = value
+        self._shape_set_dirty()
+
+    @property
+    def hidden(self) -> bool:
+        """Hide the circle or not."""
+        return self._hidden
+
+    @hidden.setter
+    def hidden(self, value: bool) -> None:
+        self._hidden = value
+        self._shape_set_dirty()
+
+    @property
+    def location(self) -> Tuple[int, int]:
+        """(X,Y) position of the center point of the circle in the parent."""
+        return (self._x, self._y)
+
+    @location.setter
+    def location(self, value: Tuple[int, int]) -> None:
+        if len(value) != 2:
+            raise ValueError("location must be a list or tuple with exactly 2 integers")
+        x = value[0]
+        y = value[1]
+        dirty = False
+        if self._x != x:
+            self._x = x
+            dirty = True
+        if self._y != y:
+            self._y = y
+            dirty = True
+        if dirty:
+            self._shape_set_dirty()
+
+    @property
+    def pixel_shader(self) -> Union[ColorConverter, Palette]:
+        """The pixel shader of the circle."""
+        return self._pixel_shader
+
+    @pixel_shader.setter
+    def pixel_shader(self, value: Union[ColorConverter, Palette]) -> None:
+        self._pixel_shader = value
+
+    def _get_area(self, _out_area: Area) -> Area:
+        raise NotImplementedError("Subclass must implement _get_area")
+
+    def _get_pixel(self, _x: int, _y: int) -> int:
+        raise NotImplementedError("Subclass must implement _get_pixel")
+
+    def _shape_set_dirty(self) -> None:
+        current_area = Area()
+        self._get_screen_area(current_area)
+        moved = current_area != self._current_area
+        if moved:
+            self._current_area.union(
+                self._ephemeral_dirty_area, self._ephemeral_dirty_area
+            )
+            # Dirty area tracks the shape's footprint between draws.  It's reset on refresh finish.
+            current_area.copy_into(self._current_area)
+        self._current_area_dirty = True
+
+    def _get_dirty_area(self, out_area: Area) -> Area:
+        out_area.x1 = out_area.x2
+        self._ephemeral_dirty_area.union(self._current_area, out_area)
+        return True  # For now just always redraw.
+
+    def _get_screen_area(self, out_area) -> Area:
+        self._get_area(out_area)
+        if self._absolute_transform.transpose_xy:
+            x = self._absolute_transform.x + self._absolute_transform.dx * self._y
+            y = self._absolute_transform.y + self._absolute_transform.dy * self._x
+            if self._absolute_transform.dx < 1:
+                out_area.y1 = out_area.y1 * -1 + 1
+                out_area.y2 = out_area.y2 * -1 + 1
+            if self._absolute_transform.dy < 1:
+                out_area.x1 = out_area.x1 * -1 + 1
+                out_area.x2 = out_area.x2 * -1 + 1
+            self._area_transpose(out_area)
+        else:
+            x = self._absolute_transform.x + self._absolute_transform.dx * self._x
+            y = self._absolute_transform.y + self._absolute_transform.dy * self._y
+            if self._absolute_transform.dx < 1:
+                out_area.x1 = out_area.x1 * -1 + 1
+                out_area.x2 = out_area.x2 * -1 + 1
+            if self._absolute_transform.dy < 1:
+                out_area.y1 = out_area.y1 * -1 + 1
+                out_area.y2 = out_area.y2 * -1 + 1
+        out_area.canon()
+        out_area.shift(x, y)
+
+    @staticmethod
+    def _area_transpose(to_transpose: Area) -> Area:
+        to_transpose.x1, to_transpose.y1 = to_transpose.y1, to_transpose.x1
+        to_transpose.x2, to_transpose.y2 = to_transpose.y2, to_transpose.x2
+
+    def _screen_to_shape_coordinates(self, x: int, y: int) -> Tuple[int, int]:
+        """Get the target pixel based on the shape's coordinate space"""
+        if self._absolute_transform.transpose_xy:
+            out_shape_x = (
+                y - self._absolute_transform.y - self._absolute_transform.dy * self._x
+            )
+            out_shape_y = (
+                x - self._absolute_transform.x - self._absolute_transform.dx * self._y
+            )
+
+            if self._absolute_transform.dx < 1:
+                out_shape_x *= -1
+            if self._absolute_transform.dy < 1:
+                out_shape_y *= -1
+        else:
+            out_shape_x = (
+                x - self._absolute_transform.x - self._absolute_transform.dx * self._x
+            )
+            out_shape_y = (
+                y - self._absolute_transform.y - self._absolute_transform.dy * self._y
+            )
+
+            if self._absolute_transform.dx < 1:
+                out_shape_x *= -1
+            if self._absolute_transform.dy < 1:
+                out_shape_y *= -1
+
+            # It's mirrored via dx. Maybe we need to add support for also separately mirroring?
+            # if self.absolute_transform.mirror_x:
+            #    pixel_to_get_x = (
+            #        (shape_area.x2 - shape_area.x1)
+            #        - (pixel_to_get_x - shape_area.x1)
+            #        + shape_area.x1
+            #        - 1
+            #    )
+            # if self.absolute_transform.mirror_y:
+            #    pixel_to_get_y = (
+            #        (shape_area.y2 - shape_area.y1)
+            #        - (pixel_to_get_y - shape_area.y1)
+            #        + +shape_area.y1
+            #        - 1
+            #    )
+
+        return out_shape_x, out_shape_y
+
+    def _shape_contains(self, x: int, y: int) -> bool:
+        shape_x, shape_y = self._screen_to_shape_coordinates(x, y)
+        return self._get_pixel(shape_x, shape_y) != 0
+
+    def _fill_area(
+        self,
+        colorspace: Colorspace,
+        area: Area,
+        mask: WriteableBuffer,
+        buffer: WriteableBuffer,
+    ) -> bool:
+        # pylint: disable=too-many-locals,too-many-branches,too-many-statements
+        if self._hidden:
+            return False
+
+        overlap = Area()
+        if not area.compute_overlap(self._current_area, overlap):
+            return False
+
+        full_coverage = area == overlap
+        pixels_per_byte = 8 // colorspace.depth
+        linestride_px = area.width()
+        line_dirty_offset_px = (overlap.y1 - area.y1) * linestride_px
+        column_dirty_offset_px = overlap.x1 - area.x1
+
+        input_pixel = InputPixelStruct()
+        output_pixel = OutputPixelStruct()
+
+        shape_area = Area()
+        self._get_area(shape_area)
+
+        mask_start_px = line_dirty_offset_px
+
+        for input_pixel.y in range(overlap.y1, overlap.y2):
+            mask_start_px += column_dirty_offset_px
+            for input_pixel.x in range(overlap.x1, overlap.x2):
+                # Check the mask first to see if the pixel has already been set.
+                pixel_index = mask_start_px + (input_pixel.x - overlap.x1)
+                mask_doubleword = mask[pixel_index // 32]
+                mask_bit = pixel_index % 32
+                if (mask_doubleword & (1 << mask_bit)) != 0:
+                    continue
+                output_pixel.pixel = 0
+
+                # Cast input screen coordinates to shape coordinates to pick the pixel to draw
+                pixel_to_get_x, pixel_to_get_y = self._screen_to_shape_coordinates(
+                    input_pixel.x, input_pixel.y
+                )
+                input_pixel.pixel = self._get_pixel(pixel_to_get_x, pixel_to_get_y)
+
+                # vectorio shapes use 0 to mean "area is not covered."
+                # We can skip all the rest of the work for this pixel
+                # if it's not currently covered by the shape.
+                if input_pixel.pixel == 0:
+                    full_coverage = False
+                else:
+                    # Pixel is not transparent. Let's pull the pixel value index down
+                    # to 0-base for more error-resistant palettes.
+                    input_pixel.pixel -= 1
+                    output_pixel.opaque = True
+                    if self._pixel_shader is None:
+                        output_pixel.pixel = input_pixel.pixel
+                    elif isinstance(self._pixel_shader, Palette):
+                        self._pixel_shader._get_color(  # pylint: disable=protected-access
+                            colorspace, input_pixel, output_pixel
+                        )
+                    elif isinstance(self._pixel_shader, ColorConverter):
+                        self._pixel_shader._convert(  # pylint: disable=protected-access
+                            colorspace, input_pixel, output_pixel
+                        )
+
+                    if not output_pixel.opaque:
+                        full_coverage = False
+
+                    mask[pixel_index // 32] |= 1 << (pixel_index % 32)
+                    if colorspace.depth == 16:
+                        struct.pack_into(
+                            "H",
+                            buffer.cast("B"),
+                            pixel_index * 2,
+                            output_pixel.pixel,
+                        )
+                    elif colorspace.depth == 32:
+                        struct.pack_into(
+                            "I",
+                            buffer.cast("B"),
+                            pixel_index * 4,
+                            output_pixel.pixel,
+                        )
+                    elif colorspace.depth == 8:
+                        buffer.cast("B")[pixel_index] = output_pixel.pixel & 0xFF
+                    elif colorspace.depth < 8:
+                        # Reorder the offsets to pack multiple rows into
+                        # a byte (meaning they share a column).
+                        if not colorspace.pixels_in_byte_share_row:
+                            row = pixel_index // linestride_px
+                            col = pixel_index % linestride_px
+                            # Dividing by pixels_per_byte does truncated division
+                            # even if we multiply it back out
+                            pixel_index = (
+                                col * pixels_per_byte
+                                + (row // pixels_per_byte)
+                                * pixels_per_byte
+                                * linestride_px
+                                + (row % pixels_per_byte)
+                            )
+                        shift = (pixel_index % pixels_per_byte) * colorspace.depth
+                        if colorspace.reverse_pixels_in_byte:
+                            # Reverse the shift by subtracting it from the leftmost shift
+                            shift = (pixels_per_byte - 1) * colorspace.depth - shift
+                        buffer.cast("B")[pixel_index // pixels_per_byte] |= (
+                            output_pixel.pixel << shift
+                        )
+            mask_start_px += linestride_px - column_dirty_offset_px
+
+        return full_coverage
+
+    def _finish_refresh(self) -> None:
+        if self._ephemeral_dirty_area.empty() and not self._current_area_dirty:
+            return
+        # Reset dirty area to nothing
+        self._ephemeral_dirty_area.x1 = self._ephemeral_dirty_area.x2
+        self._current_area_dirty = False
+
+        if isinstance(self._pixel_shader, (Palette, ColorConverter)):
+            self._pixel_shader._finish_refresh()  # pylint: disable=protected-access
+
+    def _get_refresh_areas(self, areas: list[Area]) -> None:
+        if self._current_area_dirty or (
+            isinstance(self._pixel_shader, (Palette, ColorConverter))
+            and self._pixel_shader._needs_refresh  # pylint: disable=protected-access
+        ):
+            if not self._ephemeral_dirty_area.empty():
+                # Both are dirty, check if we should combine the areas or draw separately
+                # Draws as few pixels as possible both when animations move short distances
+                # and large distances. The display core implementation currently doesn't
+                # combine areas to reduce redrawing of masked areas. If it does, this could
+                # be simplified to just return the 2 possibly overlapping areas.
+                area_swap = Area()
+                self._ephemeral_dirty_area.compute_overlap(
+                    self._current_area, area_swap
+                )
+                overlap_size = area_swap.size()
+                self._ephemeral_dirty_area.union(self._current_area, area_swap)
+                union_size = area_swap.size()
+                current_size = self._current_area.size()
+                dirty_size = self._ephemeral_dirty_area.size()
+
+                if union_size - dirty_size - current_size + overlap_size <= min(
+                    dirty_size, current_size
+                ):
+                    # The excluded / non-overlapping area from the disjoint dirty and current
+                    # areas is smaller than the smallest area we need to draw. Redrawing the
+                    # overlapping area would cost more than just drawing the union disjoint
+                    # area once.
+                    area_swap.copy_into(self._ephemeral_dirty_area)
+                else:
+                    # The excluded area between the 2 dirty areas is larger than the smallest
+                    # dirty area. It would be more costly to combine these areas than possibly
+                    # redraw some overlap.
+                    areas.append(self._current_area)
+                areas.append(self._ephemeral_dirty_area)
+            else:
+                areas.append(self._current_area)
+        elif not self._ephemeral_dirty_area.empty():
+            areas.append(self._ephemeral_dirty_area)
+
+    def _update_transform(self, group_transform) -> None:
+        self._absolute_transform = (
+            null_transform if group_transform is None else group_transform
+        )
+        self._shape_set_dirty()