# SPDX-FileCopyrightText: 2020 Melissa LeBlanc-Williams for Adafruit Industries # # SPDX-License-Identifier: MIT """ `displayio.display` ================================================================================ displayio for Blinka **Software and Dependencies:** * Adafruit Blinka: https://github.com/adafruit/Adafruit_Blinka/releases * Author(s): Melissa LeBlanc-Williams """ import time import struct from typing import Optional import digitalio from PIL import Image import microcontroller import circuitpython_typing from ._displaycore import _DisplayCore from ._displaybus import _DisplayBus from ._colorconverter import ColorConverter from ._group import Group from ._structs import RectangleStruct from ._area import Area from ._constants import ( CHIP_SELECT_TOGGLE_EVERY_BYTE, CHIP_SELECT_UNTOUCHED, DISPLAY_COMMAND, DISPLAY_DATA, BACKLIGHT_IN_OUT, BACKLIGHT_PWM, NO_COMMAND, ) __version__ = "0.0.0+auto.0" __repo__ = "https://github.com/adafruit/Adafruit_Blinka_displayio.git" class Display: # pylint: disable=too-many-instance-attributes """This initializes a display and connects it into CircuitPython. Unlike other objects in CircuitPython, Display objects live until ``displayio.release_displays()`` is called. This is done so that CircuitPython can use the display itself. Most people should not use this class directly. Use a specific display driver instead that will contain the initialization sequence at minimum. """ def __init__( self, display_bus: _DisplayBus, init_sequence: circuitpython_typing.ReadableBuffer, *, width: int, height: int, colstart: int = 0, rowstart: int = 0, rotation: int = 0, color_depth: int = 16, grayscale: bool = False, pixels_in_byte_share_row: bool = True, bytes_per_cell: int = 1, reverse_pixels_in_byte: bool = False, reverse_bytes_in_word: bool = True, set_column_command: int = 0x2A, set_row_command: int = 0x2B, write_ram_command: int = 0x2C, backlight_pin: Optional[microcontroller.Pin] = None, brightness_command: Optional[int] = None, brightness: float = 1.0, auto_brightness: bool = False, single_byte_bounds: bool = False, data_as_commands: bool = False, auto_refresh: bool = True, native_frames_per_second: int = 60, backlight_on_high: bool = True, SH1107_addressing: bool = False, set_vertical_scroll: int = 0, ): # pylint: disable=unused-argument,too-many-locals,invalid-name """Create a Display object on the given display bus (`displayio.FourWire` or `paralleldisplay.ParallelBus`). The ``init_sequence`` is bitpacked to minimize the ram impact. Every command begins with a command byte followed by a byte to determine the parameter count and if a delay is need after. When the top bit of the second byte is 1, the next byte will be the delay time in milliseconds. The remaining 7 bits are the parameter count excluding any delay byte. The third through final bytes are the remaining command parameters. The next byte will begin a new command definition. Here is a portion of ILI9341 init code: .. code-block:: python init_sequence = ( b"\\xE1\\x0F\\x00\\x0E\\x14\\x03\\x11\\x07\\x31\ \\xC1\\x48\\x08\\x0F\\x0C\\x31\\x36\\x0F" b"\\x11\\x80\\x78" # Exit Sleep then delay 0x78 (120ms) b"\\x29\\x80\\x78" # Display on then delay 0x78 (120ms) ) display = displayio.Display(display_bus, init_sequence, width=320, height=240) The first command is 0xE1 with 15 (0x0F) parameters following. The second and third are 0x11 and 0x29 respectively with delays (0x80) of 120ms (0x78) and no parameters. Multiple byte literals (b”“) are merged together on load. The parens are needed to allow byte literals on subsequent lines. The initialization sequence should always leave the display memory access inline with the scan of the display to minimize tearing artifacts. """ # Turn off auto-refresh as we init self._auto_refresh = False ram_width = 0x100 ram_height = 0x100 if single_byte_bounds: ram_width = 0xFF ram_height = 0xFF self._core = _DisplayCore( bus=display_bus, width=width, height=height, ram_width=ram_width, ram_height=ram_height, colstart=colstart, rowstart=rowstart, rotation=rotation, color_depth=color_depth, grayscale=grayscale, pixels_in_byte_share_row=pixels_in_byte_share_row, bytes_per_cell=bytes_per_cell, reverse_pixels_in_byte=reverse_pixels_in_byte, reverse_bytes_in_word=reverse_bytes_in_word, column_command=set_column_command, row_command=set_row_command, set_current_column_command=NO_COMMAND, set_current_row_command=NO_COMMAND, data_as_commands=data_as_commands, always_toggle_chip_select=False, sh1107_addressing=(SH1107_addressing and color_depth == 1), address_little_endian=False, ) self._write_ram_command = write_ram_command self._brightness_command = brightness_command self._first_manual_refresh = not auto_refresh self._backlight_on_high = backlight_on_high self._native_frames_per_second = native_frames_per_second self._native_ms_per_frame = 1000 // native_frames_per_second self._auto_brightness = auto_brightness self._brightness = brightness self._auto_refresh = auto_refresh self._initialize(init_sequence) self._buffer = Image.new("RGB", (width, height)) self._current_group = None self._last_refresh_call = 0 self._refresh_thread = None if self._auto_refresh: self.auto_refresh = True self._colorconverter = ColorConverter() self._backlight_type = None if backlight_pin is not None: try: from pwmio import PWMOut # pylint: disable=import-outside-toplevel # 100Hz looks decent and doesn't keep the CPU too busy self._backlight = PWMOut(backlight_pin, frequency=100, duty_cycle=0) self._backlight_type = BACKLIGHT_PWM except ImportError: # PWMOut not implemented on this platform pass if self._backlight_type is None: self._backlight_type = BACKLIGHT_IN_OUT self._backlight = digitalio.DigitalInOut(backlight_pin) self._backlight.switch_to_output() self.brightness = brightness def __new__(cls, *args, **kwargs): from . import ( # pylint: disable=import-outside-toplevel, cyclic-import allocate_display, ) display_instance = super().__new__(cls) allocate_display(display_instance) return display_instance def _initialize(self, init_sequence): i = 0 while i < len(init_sequence): command = init_sequence[i] data_size = init_sequence[i + 1] delay = (data_size & 0x80) > 0 data_size &= ~0x80 if self._core.data_as_commands: self._core.send( DISPLAY_COMMAND, CHIP_SELECT_TOGGLE_EVERY_BYTE, bytes([command]) + init_sequence[i + 2 : i + 2 + data_size], ) else: self._core.send( DISPLAY_COMMAND, CHIP_SELECT_TOGGLE_EVERY_BYTE, bytes([command]) ) self._core.send( DISPLAY_DATA, CHIP_SELECT_UNTOUCHED, init_sequence[i + 2 : i + 2 + data_size], ) delay_time_ms = 10 if delay: data_size += 1 delay_time_ms = init_sequence[i + 1 + data_size] if delay_time_ms == 255: delay_time_ms = 500 time.sleep(delay_time_ms / 1000) i += 2 + data_size def _send_pixels(self, pixels): if not self._core.data_as_commands: self._core.send( DISPLAY_COMMAND, CHIP_SELECT_TOGGLE_EVERY_BYTE, bytes([self._write_ram_command]), ) self._core.send(DISPLAY_DATA, CHIP_SELECT_UNTOUCHED, pixels) def show(self, group: Group) -> None: """Switches to displaying the given group of layers. When group is None, the default CircuitPython terminal will be shown. """ self._core.show(group) def refresh( self, *, target_frames_per_second: Optional[int] = None, minimum_frames_per_second: int = 0, ) -> bool: """When auto refresh is off, waits for the target frame rate and then refreshes the display, returning True. If the call has taken too long since the last refresh call for the given target frame rate, then the refresh returns False immediately without updating the screen to hopefully help getting caught up. If the time since the last successful refresh is below the minimum frame rate, then an exception will be raised. Set minimum_frames_per_second to 0 to disable. When auto refresh is on, updates the display immediately. (The display will also update without calls to this.) """ maximum_ms_per_real_frame = 0xFFFFFFFF if minimum_frames_per_second > 0: maximum_ms_per_real_frame = 1000 // minimum_frames_per_second if target_frames_per_second is None: target_ms_per_frame = 0xFFFFFFFF else: target_ms_per_frame = 1000 // target_frames_per_second if ( not self._auto_refresh and not self._first_manual_refresh and target_ms_per_frame != 0xFFFFFFFF ): current_time = time.monotonic() * 1000 current_ms_since_real_refresh = current_time - self._core.last_refresh if current_ms_since_real_refresh > maximum_ms_per_real_frame: raise RuntimeError("Below minimum frame rate") current_ms_since_last_call = current_time - self._last_refresh_call self._last_refresh_call = current_time if current_ms_since_last_call > target_ms_per_frame: return False remaining_time = target_ms_per_frame - ( current_ms_since_real_refresh % target_ms_per_frame ) time.sleep(remaining_time / 1000) self._first_manual_refresh = False self._refresh_display() return True def _refresh_display(self): if not self._core.start_refresh(): return False # TODO: Likely move this to _refresh_area() # Go through groups and and add each to buffer """ if self._core.current_group is not None: buffer = Image.new("RGBA", (self._core.width, self._core.height)) # Recursively have everything draw to the image self._core.current_group._fill_area( buffer ) # pylint: disable=protected-access # save image to buffer (or probably refresh buffer so we can compare) self._buffer.paste(buffer) """ areas_to_refresh = self._get_refresh_areas() for area in areas_to_refresh: self._refresh_area(area) self._core.finish_refresh() return True def _get_refresh_areas(self) -> list[Area]: """Get a list of areas to be refreshed""" areas = [] if self._core.full_refresh: areas.append(self._core.area) elif self._core.current_group is not None: self._core.current_group._get_refresh_areas( # pylint: disable=protected-access areas ) return areas def background(self): """Run background refresh tasks. Do not call directly""" if ( self._auto_refresh and (time.monotonic() * 1000 - self._core.last_refresh) > self._native_ms_per_frame ): self.refresh() def _refresh_area(self, area) -> bool: """Loop through dirty areas and redraw that area.""" # pylint: disable=too-many-locals buffer_size = 128 clipped = Area() if not self._core.clip_area(area, clipped): return True rows_per_buffer = clipped.height() pixels_per_word = (struct.calcsize("I") * 8) // self._core.colorspace.depth pixels_per_buffer = clipped.size() subrectangles = 1 if self._core.sh1107_addressing: subrectangles = rows_per_buffer // 8 rows_per_buffer = 8 elif clipped.size() > buffer_size * pixels_per_word: rows_per_buffer = buffer_size * pixels_per_word // clipped.width() if rows_per_buffer == 0: rows_per_buffer = 1 if ( self._core.colorspace.depth < 8 and self._core.colorspace.pixels_in_byte_share_row ): pixels_per_byte = 8 // self._core.colorspace.depth if rows_per_buffer % pixels_per_byte != 0: rows_per_buffer -= rows_per_buffer % pixels_per_byte subrectangles = clipped.height() // rows_per_buffer if clipped.height() % rows_per_buffer != 0: subrectangles += 1 pixels_per_buffer = rows_per_buffer * clipped.width() buffer_size = pixels_per_buffer // pixels_per_word if pixels_per_buffer % pixels_per_word: buffer_size += 1 buffer = bytearray(buffer_size) mask_length = (pixels_per_buffer // 32) + 1 mask = bytearray(mask_length) remaining_rows = clipped.height() for subrect_index in range(subrectangles): subrectangle = Area( clipped.x1, clipped.y1 + rows_per_buffer * subrect_index, clipped.x2, clipped.y1 + rows_per_buffer * (subrect_index + 1), ) if remaining_rows < rows_per_buffer: subrectangle.y2 = subrectangle.y1 + remaining_rows self._core.set_region_to_update(subrectangle) if self._core.colorspace.depth >= 8: subrectangle_size_bytes = subrectangle.size() * ( self._core.colorspace.depth // 8 ) else: subrectangle_size_bytes = subrectangle.size() // ( 8 // self._core.colorspace.depth ) self._core.fill_area(subrectangle, mask, buffer) self._core.begin_transaction() self._send_pixels(buffer[:subrectangle_size_bytes]) self._core.end_transaction() return True def _apply_rotation(self, rectangle): """Adjust the rectangle coordinates based on rotation""" if self._core.rotation == 90: return RectangleStruct( self._core.height - rectangle.y2, rectangle.x1, self._core.height - rectangle.y1, rectangle.x2, ) if self._core.rotation == 180: return RectangleStruct( self._core.width - rectangle.x2, self._core.height - rectangle.y2, self._core.width - rectangle.x1, self._core.height - rectangle.y1, ) if self._core.rotation == 270: return RectangleStruct( rectangle.y1, self._core.width - rectangle.x2, rectangle.y2, self._core.width - rectangle.x1, ) return rectangle def fill_row( self, y: int, buffer: circuitpython_typing.WriteableBuffer ) -> circuitpython_typing.WriteableBuffer: """Extract the pixels from a single row""" for x in range(0, self._core.width): _rgb_565 = self._colorconverter.convert(self._buffer.getpixel((x, y))) buffer[x * 2] = (_rgb_565 >> 8) & 0xFF buffer[x * 2 + 1] = _rgb_565 & 0xFF return buffer def release(self) -> None: """Release the display and free its resources""" self.auto_refresh = False self._core.release_display_core() def reset(self) -> None: """Reset the display""" self.auto_refresh = True @property def auto_refresh(self) -> bool: """True when the display is refreshed automatically.""" return self._auto_refresh @auto_refresh.setter def auto_refresh(self, value: bool): self._first_manual_refresh = not value self._auto_refresh = value @property def brightness(self) -> float: """The brightness of the display as a float. 0.0 is off and 1.0 is full `brightness`. When `auto_brightness` is True, the value of `brightness` will change automatically. If `brightness` is set, `auto_brightness` will be disabled and will be set to False. """ return self._brightness @brightness.setter def brightness(self, value: float): if 0 <= float(value) <= 1.0: if not self._backlight_on_high: value = 1.0 - value if self._backlight_type == BACKLIGHT_PWM: self._backlight.duty_cycle = value * 0xFFFF elif self._backlight_type == BACKLIGHT_IN_OUT: self._backlight.value = value > 0.99 elif self._brightness_command is not None: self._core.begin_transaction() if self._core.data_as_commands: self._core.send( DISPLAY_COMMAND, CHIP_SELECT_TOGGLE_EVERY_BYTE, bytes([self._brightness_command, 0xFF * value]), ) else: self._core.send( DISPLAY_COMMAND, CHIP_SELECT_TOGGLE_EVERY_BYTE, bytes([self._brightness_command]), ) self._core.send( DISPLAY_DATA, CHIP_SELECT_UNTOUCHED, round(value * 255) ) self._core.end_transaction() self._brightness = value else: raise ValueError("Brightness must be between 0.0 and 1.0") @property def auto_brightness(self) -> bool: """True when the display brightness is adjusted automatically, based on an ambient light sensor or other method. Note that some displays may have this set to True by default, but not actually implement automatic brightness adjustment. `auto_brightness` is set to False if `brightness` is set manually. """ return self._auto_brightness @auto_brightness.setter def auto_brightness(self, value: bool): self._auto_brightness = value @property def width(self) -> int: """Display Width""" return self._core.get_width() @property def height(self) -> int: """Display Height""" return self._core.get_height() @property def rotation(self) -> int: """The rotation of the display as an int in degrees.""" return self._core.get_rotation() @rotation.setter def rotation(self, value: int): self._core.set_rotation(value) @property def bus(self) -> _DisplayBus: """Current Display Bus""" return self._core.get_bus()